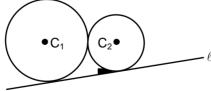


TARGET : JEE (Advanced) 2015

Course : VIJETA & VIJAY (ADP & ADR) Date : 21-04-2015

TEST INFORMATION

DATE : 22.04.2015


PART TEST-02 (PT-02)

Syllabus : Application of Derivatives, Sequence & Series, Binomial Theorem

REVISION DPP OF STRAIGHT LINE AND CIRCLE

Sing Mult	al Marks:147 le choice Objective (–1 negative marking) Q. 1 to 11 iple choice objective (–1 negative marking) Q. 12 to 38 iprehension (–1 negative marking) Q.39 to 40	Max. Time:113.5 mir (3 marks 2.5 min.) [33, 27.5] (4 marks, 3 min.) [108, 81] (3 marks 2.5 min.) [6, 5]				
1.	From a point 'P' on the line $2x + y + 4 = 0$, which is neare tangents are drawn to given circle. The area of quadrilate	1 1				


- tangents are drawn to given circle. The area of quadrilateral formed by these pair of tangents and pair of radii, is (A) 8 (B) $\sqrt{110}$ (C) $\sqrt{19}$ (D) 19
- **2.** The lines 5x + 12y 10 = 0 and 5x 12y 40 = 0 touch a circle of radius 3 units. If the centre of circle lies in the first quadrant, then the coordinates of centre is (A) (5, 3) (B) (5, 1) (C) (5, 2) (D) (5, 6)
- **3.** Let $A \equiv (-2, 0)$ and $B \equiv (2, 0)$, then the number of integral values of a, $a \in [-10, 10]$ for which line segment AB subtends an acute angle at point C(a, a + 1) is (A) 15 (B) 17 (C) 19 (D) 21
- 4. If the circles $x^2 + y^2 + (3 + \sin \beta) x + 2 \cos \alpha \cdot y = 0$ and $x^2 + y^2 + 2 \cos \alpha \cdot x + 2cy = 0$ touch each other, then the maximum value of 'c' is
 - (A) $\frac{1}{2}$ (B) 1 (C) $\frac{3}{2}$ (D) 2
- 5. Two circles C_1 and C_2 of radii $\frac{3}{2}$ and $\frac{1}{2}$ respectively touch each other externally and ' ℓ ' is their common tangent as shown in figure.

Then the perimeter of shaded region is :

(A) $\frac{5\pi}{6} + \sqrt{3}$ (B) $\frac{2\pi}{3} + \sqrt{3}$ (C) $\pi - \sqrt{3}$ (D) $\pi + \sqrt{3}$

- **6.** Vertices of a variable triangle are (3, 4), $(5\cos\theta, 5\sin\theta)$ and $(5\sin\theta, -5\cos\theta)$. Then locus of its orthocenter is
 - (A) $(x + y 1)^2 + (x y 7)^2 = 100$ (C) $(x + y - 7)^2 + (x + y - 1)^2 = 100$
- (B) $(x + y 7)^2 + (x y 1)^2 = 100$ (D) $(x + y - 7)^2 + (x - y + 1)^2 = 100$

7.	If $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$ be the images of point $P(x, y)$ about lines $L_1 = ax + by + c = 0$ and $L_2 = bx - ay + c' = 0$ respectively then the line joining points P_1 and P_2 always passes through								
	(A) Point of intersection	n of $L_1 = 0$ and $L_2 = 0$	(B) Point $\left(\frac{x+x_1}{2}, \frac{y+y}{2}\right)$	$\left(\frac{1}{2}\right)$					
	(C) Point $\left(\frac{x_1 - x_2}{2}, \frac{y_1 - x_2}{2}\right)$	$\left(\frac{-y_2}{2}\right)$	(D) Information provide	ed is incomplete					
8.	The base of a triangle the lines y ² – 8xy – 9x ² (A) straight line	passes through a fixed p = 0. The locus of vertex (B) circle	ooint (f, g) and its sides a of triangle is (C) parabola	re bisected at right angles by (D) ellipse					
9.	If $\frac{a}{\sqrt{bc}} - 2 = \sqrt{\frac{b}{c}} + \sqrt{\frac{c}{b}}$	where $a, b, c > 0$, the	en the family of lines \sqrt{a}	$x + \sqrt{b}y + \sqrt{c} = 0$ always passes					
	through the fixed point (A) (1, 1)			(D) (–1, 1)					
10.	A line of fixed length 2	units moves so that its c 0 which lies in the secon	one end is on the positive d quadrant. The locus of	x-axis and other end on that the mid-point of the line is given					
	by (A) $x^2 + 5y^2 + 4xy - 1 =$ (C) $x^2 + 5y^2 - 4xy - 1 =$: 0 : 0	(B) x² + 5y² + 4xy + 1 = (D) 4x² + 5y² + 4xy + 1	= 0 = 0					
11.	A point P moves such that it is at a constant distance c from the origin. If Q is the image of P in the line mirror $y = x$ and R is the image of Q in the line mirror $y = -x$ then locus of R is (A) $y^2 = x^2$ (B) $x^2 + y^2 = 2c^2$ (C) $xy = c^2$ (D) $x^2 + y^2 = c^2$								
12.	If a circle passes through the points of intersection of the coordinate axes with the lines $\lambda x - y + 1 = 0$ and $x - 2y + 3 = 0$, then the value of λ is								
	(A) 1	(B) 2	(C) 3	(D) $\frac{1}{3}$					
13.	If 4a² + b² + 2c² + 4ab point(s)	- 6ac - 3bc = 0, then t	the family of lines ax + b	by $+ c = 0$ may be concurrent at					
	$(A)\left(-1,-\frac{1}{2}\right)$	(B) (-1, -1)	(C) (–2, –1)	(D) (-1, 2)					
14.	Three vertices of a par can be :	allelogram are (1, 1), (2	, 4) and (3, 5), then the f	ourth vertex of the parallelogram					
45	(A) (4, 8)	(B) (5, 8)		(D) (2, 2) - 2y – 1 = 0 are concurrent, can					
15.	be (A) 2	(B) -3	(C) -2	(D) 3					
16.			· ´	epted by the axes. Then an					
	extremity of the other of (A) $(1+\sqrt{3},\sqrt{3}-1)$	liagonal is : (B) $(1 + \sqrt{3}, \sqrt{3} + 1)$	(C) $(1 - \sqrt{3}, \sqrt{3} - 1)$	(D) $(1 - \sqrt{3}, \sqrt{3} + 1)$					
17.	The equation of the sic 6x + 10y = 59 as angle (A) $6x + 5y - 13 = 0$	les of the triangle having bisector and as median (B) 2x + 9y - 65 = 0	(3, -1) as a vertex and x respectively drawn from (C) 18x + 13y - 41 = 0	x – 4y + 10 = 0 and different vertices, are : (D) 6x – 7y – 25 = 0					
18.	C_1 and C_2 are two circles of radii a and b (a < b) touching both the coordinate axes and have their centres in the first quadrant. Then which of the following is true?								
	(A) If C ₁ , C ₂ touch each other then $\frac{b}{a} = 3 + 2\sqrt{2}$								
	(B) If C ₁ , C ₂ are orthogonal then $\frac{b}{a} = 2 + \sqrt{3}$								
	(C) If C ₁ , C ₂ intersect in such a way that their common chord has maximum length, then $\frac{b}{a} = 3$.								
	(D) If C ₂ passes through the centre of C ₁ , then $\frac{b}{a} = 2 + \sqrt{2}$.								
19.				joining the two fixed points					
		variable point R such tha	$t \angle PRQ = \frac{\pi}{2}$ and 'n' repr	resents the number of such					
	triangles, then (A) g(5) = 4	(B) g(7) = 0	(C) g(6.25) = 2	(D) g (6.25) = 1					
八	Resonanc		Tower, A-46 & 52, IPIA, Near City e.ac.in E-mail : contact@resonand	Mall, Jhalawar Road, Kota (Raj.) - 324005 ce.ac.in					

20. The line y = x is tangent at (0, 0) to a circle of radius 1. The centre of circle may be : (C) $\left(\frac{1}{2}, -\frac{1}{2}\right)$ (D) $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ (A) $\left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$ (B $\left(-\frac{1}{2}, \frac{1}{2}\right)$ If $(x - 2)^2 + (y - 2)^2 = 1$, then which of the following is true ? 21. (A) maximum value of x + y is 4 + $\sqrt{2}$ (B) maximum value of x – y is $\sqrt{2}$ (C) maximum value of xy is $\frac{9+4\sqrt{2}}{2}$ (D) minimum value of x + y is $4 - \sqrt{2}$ 22. The slope of median drawn from the vertex 'A' of triangle ABC is -2. Coordinates of vertices B and C are (-1,3) & (3,5) respectively. If the area of triangle is 5 square units, then the distance of vertex A from the origin is (C) $2\sqrt{2}$ (D) $3\sqrt{2}$ (A) 6 (B) 4 A(1, 2) and B(7, 10) are two fixed points. If P(x, y) is a point such that $\angle APB = 60^{\circ}$ and the area of 23. triangle APB is maximum, then (A) point P lies on the line 3x + 4y = 36(B) point P is on the circle passing through given points and having radius 10 (C) point P is on the circle passing through given points and having radius $\frac{10}{\sqrt{2}}$ (D) area of $\triangle PAB = \frac{75}{\sqrt{2}}$ sq. units z_1 , z_2 , z_3 are three non collinear complex numbers such that $z = \frac{\ell z_1 + m z_2 + n z_3}{\ell + m + n}$ lies inside the triangle 24. formed by z_1 , z_2 , z_3 . If ℓ , m, n are roots of equation $x^3 + 3x^2 + px + q = 0$, then which of the following is **INCORRECT**? (D) p < 0, q > 0 (B) p < 0, q < 0(C) p > 0, q < 0(A) p > 0, q > 025. Equation of incircle of equilateral triangle ABC where B = (2, 0), C = (4, 0), is (A) $x^2 + y^2 - 6x + \frac{2y}{\sqrt{2}} + 9 = 0$ (B) $x^2 + y^2 + 6x - \frac{2y}{\sqrt{2}} + 9 = 0$ (C) $x^2 + y^2 + 6x + \frac{2y}{\sqrt{3}} + 9 = 0$ (D) $x^2 + y^2 - 6x - \frac{2y}{\sqrt{3}} + 9 = 0$ Equation of circle touching the circle $x^2 + y^2 - 15x + 5y = 0$ at (1, 2) and having radius $\sqrt{\frac{5}{2}}$ is 26. (A) $5x^2 + 5y^2 - 23x + 11y + 20 = 0$ (C) $5x^2 + 5y^2 + 3x - 29y + 30 = 0$ (B) $5x^2 + 5y^2 - 23x - 11y + 20 = 0$ (D) $5x^2 + 5y^2 + 3x + 29y + 30 = 0$ The equation of circle which is touched by line y = x, has its centre on the x-axis and cuts off a chord of 27. length 2 units along the line $\sqrt{3}y - x = 0$ is (A) $x^{2} + y^{2} - 4x + 2 = 0$ (B) $x^{2} + y^{2} - 4x + 6 = 0$ (C) $x^{2} + y^{2} - 6x + 2 = 0$ (D) $x^{2} + y^{2} + 4x + 2 = 0$ Let C be a circle with two diameters intersecting at an angle of 30°. A circle S having radius unity, touches both the diameters and also the circle C, then the radius of circle 'C' can be 28. (C) $\sqrt{6} + \sqrt{2} - 1$ (A) 1 + $\sqrt{6} + \sqrt{2}$ (B) 1 + $\sqrt{6} - \sqrt{2}$ (D) $\sqrt{6} - \sqrt{2} - 1$ If from (α, β) , two tangents are drawn to circle $x^2 + y^2 = 4$ so that slopes of tangents are in the ratio 1 : 2 29. and $f(x) = \alpha^2 x^2 + 12x - \frac{\beta^2}{4}$, then (A) $f(x) > 0 \forall x \in R$ (B) Locus of (α^2, β^2) is a hyperbola (C) least positive integral value of α is 1 (D) eccentricity of locus of (α^2, β^2) is $\sqrt{2}$ Equation of the chord of the circle $x^2 + y^2 - 3x - 4y - 4 = 0$ which passes through origin such that the 30. origin divides it in the ratio 4 : 1 is (C) 7x + 24y = 0(A) y = 0(B) 24x + 7y = 0(D) 7x - 24y = 0If the circle $x^2 + y^2 - 2x - 2y + 1 = 0$ is inscribed in a triangle whose two sides are coordinate axes and 31. one side has negative slope cutting intercepts a and b on x and y axis respectively, then (A) $\frac{1}{a} + \frac{1}{b} - 1 = \sqrt{\frac{1}{a^2} + \frac{1}{b^2}}$ (B) $\frac{1}{a} + \frac{1}{b} - 1 = -\sqrt{\frac{1}{a^2} + \frac{1}{b^2}}$ (D) $\frac{1}{a} + \frac{1}{b} < 1$ $(C) \frac{1}{a} + \frac{1}{b} > 1$ Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Hesonance** Educating for better tomorrow Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in PAGE NO.-3 Toll Free : 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PTC024029

- 32. The lines x + y = 1, $(m - 1)x + (m^2 - 7)y - 5 = 0$ and (m - 2)x + (2m - 5)y = 0(A) are concurrent for m = 3(B) form a triangle for m = 2(C) are concurrent for no value of m (D) are parallel for m = 3
- 33. If m_{1} , m_{2} are roots of equation $x^{2} - ax - a - 1 = 0$, then the area of the triangle formed by the three straight lines $y = m_x x$, $y = m_x x$ and y = a ($a \neq -1$) is

(A)
$$\frac{a^2(a+2)}{2(a+1)}$$
 if $a > -1$
(B) $\frac{-a^2(a+2)}{2(a+1)}$ if $a < -1$
(C) $\frac{-a^2(a+2)}{2(a+1)}$ if $-2 < a < -1$
(D) $\frac{a^2(a+2)}{2(a+1)}$ if $a < -2$

- If one of the lines in $2x^2 + axy + 3y^2 = 0$ coincide with one of those given by $4x^2 + bxy 6y^2 = 0$ and the 34. other lines represented by them be perpendicular then which of the following may be true? (A) a + b = 7(B) a + b = -6(C) a - b = -3(D) a - b = 3
- The diagonals of a rhombus ABCD intersect in (1, 2) and its two sides are parallel to the lines 35. x - y + 2 = 0 and 7x - y + 3 = 0. If the vertex A is (0, k) then the value of k is/are (A) 2/5 (B) 3/5 (C) 5/2 (D) 0
- The point $(\alpha, \alpha + 1)$ lies inside the triangle ABC whose vertices are A(0, 3), B(-2, 0) and C(6, 1) if 36.

(A)
$$\alpha = -1$$
 (B) $\alpha = \frac{-1}{2}$ (C) $\alpha = \frac{1}{2}$ (D) $\frac{-6}{7} < \alpha < \frac{3}{2}$

- 37. The straight line ax + by + c = 0 where $abc \neq 0$ will pass through the first quadrant if : (A) ac > 0 and bc > 0(B) c > 0 and bc < 0(C) bc > 0 and/or ac > 0(D) ac < 0 and/or bc < 0
- The equation of a circle in which the chord joining the points (1, 2) and (2, -1) subtends an angle of $\pi/4$ 38. at any point on the circumference is (A) $x^2 + y^2 = 5$ (B) $x^2 + y^2 - 6x - 2y + 5 = 0$ = 0

(C)
$$x^2 + y^2 + 6x + 2y - 15 =$$

(D) $x^2 + y^2 + 7x - 2y + 14 = 0$

Comprehension (For Q. No. 39 to 40)

Let C : $x^2 + y^2 - 4x - 6y - 3 = 0$ is a circle and S is a family of circles passing through two fixed points A(3, 7) and B(6, 5).

39. The chords in which the circle C cuts the member of the family S are concurrent at point

(A) (2, 3)	$(B)\left(2,\frac{23}{3}\right)$	$(C)\left(3,\frac{23}{2}\right)$	(D) (3, 2)
------------	----------------------------------	----------------------------------	------------

40. Equation of member of the family S that bisects the circumference of circle C is (A) $x^{2} + y^{2} - 5x - 1 = 0$ (C) $x^{2} + y^{2} - 5x - 6y - 1 = 0$ (B) $x^{2} + y^{2} - 5x + 6y - 1 = 0$ (D) $x^{2} + y^{2} + 5x - 6y - 1 = 0$

<u>DPP # 4</u>												
REVISION DPP OF SEQUENCE & SERIES AND BINOMIAL THEOREM												
(B)	2.	(A)	3.	(B)	4.	(C)	5.	(A)	6.	(C)	7.	(C)
(C)	9.	(C)	10.	(D)	11.	(D)	12.	(D)	13.	(B)	14.	(B,D)
(A,B,C)	16.	(A,B,D)	17.	(A,C)	18.	(A,B,C)	19.	(B,C)	20.	(A,D)	21.	(C,D)
(A,B,D)	23.	(B,C)	24.	(A,C)	25.	(A,C)	26.	(A,D)	27.	(A,B,D)	28.	(B,D)
(A,B,D)	30.	(A,B,C)	31.	(A,B,C,	D)		32.	(A,C,D)	33.	(A,C)	34.	(A,C)
(A)	36.	(B)	37.	(C)	38.	2	39.	4	40.		1	
	(C) (A,B,C) (A,B,D) (A,B,D)	 (B) 2. (C) 9. (A,B,C) 16. (A,B,D) 23. (A,B,D) 30. 	(B) 2. (A) (C) 9. (C) (A,B,C) 16. (A,B,D) (A,B,D) 23. (B,C) (A,B,D) 30. (A,B,C)	(B) 2. (A) 3. (C) 9. (C) 10. (A,B,C) 16. (A,B,D) 17. (A,B,D) 23. (B,C) 24. (A,B,D) 30. (A,B,C) 31.	(B) 2. (A) 3. (B) (C) 9. (C) 10. (D) (A,B,C) 16. (A,B,D) 17. (A,C) (A,B,D) 23. (B,C) 24. (A,C) (A,B,D) 30. (A,B,C) 31. (A,B,C)	REVISION DPP OF SEQUENCE 6 (B) 2. (A) 3. (B) 4. (C) 9. (C) 10. (D) 11. (A,B,C) 16. (A,B,D) 17. (A,C) 18. (A,B,D) 23. (B,C) 24. (A,C) 25. (A,B,D) 30. (A,B,C) 31. (A,B,C,D)	REVISION DPP of SEQUENCE & SERIES (B) 2. (A) 3. (B) 4. (C) (C) 9. (C) 10. (D) 11. (D) (A,B,C) 16. (A,B,D) 17. (A,C) 18. (A,B,C) (A,B,D) 23. (B,C) 24. (A,C) 25. (A,C) (A,B,D) 30. (A,B,C) 31. (A,B,C,D) X X	REVISION DPP OF SEQUENCE & SERIES AND R (B) 2. (A) 3. (B) 4. (C) 5. (C) 9. (C) 10. (D) 11. (D) 12. (A,B,C) 16. (A,B,D) 17. (A,C) 18. (A,B,C) 19. (A,B,D) 23. (B,C) 24. (A,C) 25. (A,C) 26. (A,B,D) 30. (A,B,C) 31. (A,B,C,D) 32.	REVISION DPP OF SEQUENCE & SERIES AND BINOMIAL (B) 2. (A) 3. (B) 4. (C) 5. (A) (C) 9. (C) 10. (D) 11. (D) 12. (D) (A,B,C) 16. (A,B,D) 17. (A,C) 18. (A,B,C) 19. (B,C) (A,B,D) 23. (B,C) 24. (A,C) 25. (A,C) 26. (A,D) (A,B,D) 30. (A,B,C) 31. (A,B,C,D) 32. (A,C,D)	REVISION DPP OF SEQUENCE & SERIES AND BINOMIAL THEOR (B) 2. (A) 3. (B) 4. (C) 5. (A) 6. (C) 9. (C) 10. (D) 11. (D) 12. (D) 13. (A,B,C) 16. (A,B,D) 17. (A,C) 18. (A,B,C) 19. (B,C) 20. (A,B,D) 23. (B,C) 24. (A,C) 25. (A,C) 26. (A,D) 27. (A,B,D) 30. (A,B,C) 31. (A,B,C,D) 32. (A,C,D) 33.	REVISION DPP OF SEQUENCE & SERIES AND BINOMIAL THEOREM (B) 2. (A) 3. (B) 4. (C) 5. (A) 6. (C) (C) 9. (C) 10. (D) 11. (D) 12. (D) 13. (B) (A,B,C) 16. (A,B,D) 17. (A,C) 18. (A,B,C) 19. (B,C) 20. (A,D) (A,B,D) 23. (B,C) 24. (A,C) 25. (A,C) 26. (A,D) 27. (A,B,D) (A,B,D) 30. (A,B,C) 31. (A,B,C,D) 32. (A,C,D) 33. (A,C)	REVISION UPP OF SEQUENCE & SERIES AND BINOMIAL THEOREM (B) 2. (A) 3. (B) 4. (C) 5. (A) 6. (C) 7. (C) 9. (C) 10. (D) 11. (D) 12. (D) 13. (B) 14. (A,B,C) 16. (A,B,D) 17. (A,C) 18. (A,B,C) 19. (B,C) 20. (A,D) 21. (A,B,D) 23. (B,C) 24. (A,C) 25. (A,C) 26. (A,D) 27. (A,B,D) 28. (A,B,D) 30. (A,B,C) 31. (A,B,C,D) 32. (A,C,D) 33. (A,C) 34.

	Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005						
/ Resonance	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	PAGE NO -4					
Educating for better tomorrow	Toll Free : 1800 200 2244 1800 258 5555 CIN: U80302RJ2007PTC024029	FAGE NO4					